E. Ivokhin, Doctor of Sciences (Physics and Mathematics), Professor, D. Apanasenko, PhD Student Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, V. Navrodskiy, PhD in Physics and Mathematics, Associate Professor Kyiv National University of Culture and Arts, Kyiv, Ukraine ABOUT PRODUCTION-TRANSPORT PROBLEM REDUCTION TO THE TWO-LEVEL PROBLEM OF DISCRETE OPTIMIZATION AND ITS APPLICATION

In this study, the application of the production and transport task is considered to solve the problem of the distribution of the limited capacities of data transmission channels between different nodes of the computer network. A scheme is proposed for reducing the problem to a two-level continuous-discrete optimization problem. The model is formulated and numerical results are obtained to solve the problem of power distribution in the network of the information and computing center.

Key words: power distribution, production and transport task, discrete-continuous programming, two-level model, optimization

Date of submission 20/01/2018

DOI: https://doi.org/10.17721/1728-2667.2018/198-3/6

References

  1. Voronin, A. A., Mishin, P., 2003. Optimalnye ierarkhicheskie struktury Moscow, IPU, 214 p.
  2. Elsasser, , Monien, B. and Preis, R., 2002. Diffusion Schemes for Load Balancing on Heterogeneous Networks. Theory Comput. System, 35(3), pp. 305-320. DOI: http://dx.doi.org/10.1007/s00224-002-1056-4
  3. Gairing, M., Lucking, T., Mavronicolas, M. and Monien, B., 2004. Computing Nash Equilibria for Scheduling on Restricted Parallel Links. Proc. 36th Annual ACM Sympos. Theory Comput., pp. 613-622.
  4. Dunne, P. E., 2005. Extremal Behavior in Multiagent Contract Negotiation. Jour. Artificial Intelligence Res., 23(1), pp. 41-78.
  5. Prilutskii, M. Kh., 2000. Distribution of a Homogeneous Resource in Tree-Structured Hierarchical Systems. Proc. III Int. Conf. Identification of Systems and Control Problems (SICPRO’2000), Moscow, IPU, pp. 2038-2049.
  6. Prilutskii, M. Kh., Kartomin, A. G., 2003. Potokovye algoritmy raspredeleniya resursov v ierarhicheskih sistemah. Issledovano v Rossii, 39, pp. 444-452. – http://zhurnal.ape.relarn.ru/ articles/2003/039.pdf
  7. Afraimovich, L. G., Prilutskii, M. Kh., 2006. Multiindex resource distributions for hierarchical systems. Avtomatika i telemekhanika, 6, pp. 194-205; Autom. Remote Control, 67:6 (2006), 1007-1016. DOI: http://dx.doi.org/10.1134/S0005117906060130
  8. Seraya, O., Dunaevskaya, O., 2009. Mnogoindeksnyye nelineynyye transportnyye zadachi. Informatsionnyye i upravlyayushchiye sistemy na zheleznodorozhnom transporte. – Khar’kov: KHGIZHT, № 5. p. 25-30.
  9. Yudin, D. B., Yudin, A. D., 1979. Ekstremalnye modeli v ekonomike. Moscow, Ekonomika, 288 p.
  10. Burkov, V. N., Korgin, N. A., Novikov, D. A., 2014. Vvedeniye v teoriyu upravleniya organizatsionnymi sistemami: uchebnik Izd.2. Izd. 2-ye. M.: Librokom, 264 p.
  11. Lukac, Z., Hunjet, D. and Neralic, L., 2008. Solving the production-transportation problem in the Petroleum Industry. Revista Inves- tigacion Operacional, 29(1), pp. 63-70.
  12. Ivokhin, Ye., Adzhubey, L., 2014. Pro rozv’yazok odniyeyi dvorivnevoyi modeli vyrobnycho-transportnoyi zadachi// Visnyk Kyyivs’koho natsional’noho universytetu imeni Tarasa Shevchenka. Seriya: Fizyko-matematychni nauky, № 3, S. 122-125.

Download